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Blind Symbol Timing and CFO Estimation for
OFDM/OQAM Systems

Davide Mattera and Mario Tanda

Abstract—The paper deals with the problem of blind synchro-
nization for OFDM/OQAM systems. Specifically, by exploiting
the approximate conjugate-symmetry property of the beginning
of a burst of OFDM/OQAM symbols, due to the presence of the
time offset, a new procedure for blind symbol timing and CFO
estimation is proposed. The performance of the derived blind
estimators is analyzed by computer simulations; the results show
that the proposed methods may provide acceptable performance
for reasonable values of the signal-to-noise ratio.

Index Terms—OFDM/OQAM, multicarrier systems, prototype
filter, FBMC, synchronization, symbol timing, CFO.

I. INTRODUCTION

IN the last years, the interest for filter-bank multicarrier
(FBMC) systems is increased, since they provide high

spectral containment. Therefore, they have been taken into
account for high-data-rate transmissions over both wired and
wireless frequency-selective channels. One of the most famous
multicarrier modulation techniques is orthogonal frequency
division multiplexing (OFDM), other known types of FBMC
systems are filtered multitone systems [1], [2] and OFDM
based on offset QAM modulation (OQAM) [3], [4], [5], [6].

The FBMC approach complements the FFT with a set
of digital filters called polyphase network (PPN) while the
OFDM approach inserts the cyclic prefix (CP) after the FFT.
Unlike OFDM, OFDM/OQAM systems do not require the
presence of a CP in order to combat the effects of frequency
selective channels. The absence of the CP implies on the
one hand the maximum spectral efficiency and, on the other
hand, an increased computational complexity. However, since
the subchannel filters are obtained by complex modulation
of a single filter, efficient polyphase implementations is of-
ten considered [7]. Fundamental differences between OFDM
and OFDM/OQAM systems concern the adoption (in the
OFDM/OQAM case) of pulse shaping filters very well lo-
calized in time and frequency [8], [9] and memory effects
between useful symbols and transmitted signal due to the PPN.

OFDM/OQAM systems, as all multicarrier systems, are
more sensitive to synchronization errors than single-carrier
systems. For this reason, it is very important to derive efficient
synchronization schemes. In the last years several studies
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have been focused on blind and data-aided carrier frequency-
offset (CFO) and symbol timing (ST) synchronization for
OFDM/OQAM systems. New proposals aim at simplifying
the structure of the preamble in order to be able to use
it for synchronization and equalization purposes. In [10] a
synchronization scheme for preamble-based ST and CFO
estimation with robust acquisition properties in dispersive
channels has been developed. In [11] a new preamble structure
has been proposed with useful properties that simplify the use
of a one-tap equalizer. The characteristics of the preamble
derive from the need to simplify the procedures for channel
estimation. The resulting synchronization algorithms become
dependent on the particular preamble, whose utilization is
obviously conditioned by the availability of a proper syn-
chronization method. Therefore, a general contribution to
the development of synchronization algorithms requires the
capability to operate without any specific knowledge about the
structure of the preamble. Obviously, this not only represents
a preamble-independent contribution to the synchronization
task, which allows a standard definition of the preamble struc-
ture unconstrained by the requirements of the synchronization
algorithms, but also paves the way to an increase of the
spectral efficiency to be achieved by avoiding the preamble.

The blind estimation algorithm proposed in [12] is based
on the exploitation of the second-order cyclostationarity of the
transmitted OFDM/OQAM signal; the convergence of such a
method is particularly slow (too many symbol periods have
to be processed) so that it is not useful in practice, unless
severe signal-to-noise ratios are considered. Moreover, it is
limited to the case where CFO is present but it is not dedicated
to the joint CFO and timing offset estimation. However,
[13] considers the case where both the offsets are jointly
estimated by exploiting the cyclostationarity properties. In [14]
an algorithm for blind CFO estimation is also proposed ac-
cording to an approximate (for a large number of subcarriers)
maximum-likelihood approach and it is shown its superior
performance in comparison with the cyclostationarity-based
methods. Moreover, in [15] a maximum likelihood method
for blind CFO estimation suited for scenarios of low signal-
to-noise ratio is proposed. However, the weak point of both
proposed methods lies in their computational complexity.

In this paper, we analyze the conjugate-symmetry property
that approximately holds in the beginning of a burst of
OFDM/OQAM symbols. Using such an approximate property,
a blind method for joint ST and CFO estimation is proposed.
Although the proposed method is derived with reference to
an AWGN channel, it is analyzed by computer simulation
with reference to standard multipath channels; the numerical
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results show that the proposed method can represent a useful
contribution to the blind timing synchronization when the
OFDM/OQAM system operates over a multipath channel.
Moreover, the same analysis shows that the proposed method
provides a useful contribution to the coarse CFO compensation
only for adequate signal-to-noise ratios. Preliminary results
about the analysis of the approximate conjugate-symmetry
property in the beginning of a burst of OFDM/OQAM symbols
and its exploitation for ST and CFO estimation are reported
in [16].

The paper is organized as follows. In Section II the
OFDM/OQAM system model is delineated. In Section III the
conjugate symmetry property (CSP) and the methods to detect
it are recalled. In Section IV it is derived the proposed blind
ST estimator exploiting the approximate CSP. In Section V
the proposed blind CFO estimation method is described. In
Section VI the performance analysis of the proposed blind
estimators, carried out by computer simulations, is presented
and discussed. Finally, conclusions are drawn in Section VII.

Notation: j
�
=

√−1, superscript (·)∗ denotes the complex
conjugation, �[·] the real part, �[·] the imaginary part, δ(·)
the Kronecker delta, | · | the absolute value and ∠[·] the argu-
ment of a complex number in [−π, π). Moreover, lowercase
boldface letters denote column vectors, · the scalar product,

‖x‖ �
=

√
x · x the norm, × the component-wise product

between two vectors and, finally, 0 and 1 denote, respectively,
the null vector and the vector whose entries are all ones.

II. SYSTEM MODEL

Let us consider an OFDM/OQAM system with an even
number M of subcarriers. The received signal when the
information-bearing signal s(t) presents a timing offset τ , a
CFO normalized to subcarrier spacing ε = ΔfT and a carrier
phase offset φ, can be written as

r(t) = ej
2π
T εtejφs(t− τ) + n(t) (1)

where n(t) is a zero-mean complex-valued white Gaussian
noise process with independent real and imaginary part, each
with two-sided power spectral density N0. The signal s(t) is
equal to

s(t) = sR(t) + jsI(t− T/2) (2)

with

sR(t) =

Nb+Ns−1∑
n=0

∑
m∈A

aRn,mejm(
2π
T t+π

2 )g(t− nT ) (3)

sI(t) =

Nb+Ns−1∑
n=0

∑
m∈A

aIn,mejm(
2π
T t+π

2 )g (t− nT ) (4)

where T is the OFDM/OQAM symbol interval, A ⊂
{0, . . . ,M−1} is the set of size Mu of active subcarriers, the
sequences aRn,m and aIn,m indicate the real and imaginary part
of the complex data symbols transmitted on the mth subcarrier
during the nth OFDM/OQAM symbol, Nb is the number of
training symbols, Ns is the number of payload symbols, while
g(t) is the prototype filter. Note that we assume that both the
training symbols and the payload symbols are unknown.

The discrete-time low-pass version of the transmitted signal
is given by

s[i]
�
= s(t)|t=iTs

= sR(iTs) + jsI((i−M/2)Ts) (5)

where Ts
�
= T/M is the sampling interval. Let us first consider

the derivation of an efficient generation procedure for the
signal sR(t). An analogous derivation can be straightforwardly
obtained for the signal sI(t).

Since the continuous-time signal is generated by D/A
conversion, we consider the generation of its discrete-time
samples

sR[i]
�
= sR(iTs)

=

Nb+Ns−1∑
n=0

∑
m∈A

aRn,mejm(
2π
T iTs+

π
2 )g(iTs − nMTs)

=

Nb+Ns−1∑
n=0

∑
m∈A

aRn,mejm(
2π
M i+π

2 )g((i− nM)Ts)(6)

The generation of the sequence sR[i] is equivalent to the
generation of the sequence of vectors d

(R)
n defined as the

M × 1 vector whose mth component, say d
(R)
n,m, is equal to

sR[nM +m] for m ∈ {0, 1, . . . ,M − 1}. Such a component
can be written as

d(R)
n,m

�
= sR[nM +m] m ∈ {0, 1, . . . ,M − 1}

=

Nb+Ns−1∑
n′=0

∑
m′∈A

aRn′,m′ejm
′( 2π

M (nM+m)+π
2 )

× g((nM +m− n′M)Ts)

=

Nb+Ns−1∑
n′=0

∑
m′∈A

(jm
′
aRn′,m′)ejm

′ 2π
M m

× g((m+ (n− n′)M)Ts) (7)

=

Nb+Ns−1∑
n′=0

b
(R)
n′,m g((m+ (n− n′)M)Ts) (8)

where we have denoted with b
(R)
n,m just the quantity∑

m′∈A
(jm

′
aRn,m′)ejm

′ 2π
M m m ∈ {0, 1, . . . ,M−1}

(9)
which is the IDFT of the sequence jmaRn,m with respect to

the index m. If we define the vector b(R)
n as the M ×1 vector

whose mth component (for m ∈ {0, 1, . . . ,M − 1}) is b
(R)
n,m

in (9), we can synthetically write

b(R)
n = IDFT [w × a(R)

n ] (10)

where IDFT[·] denotes the IDFT operator on the input vector
and, for m ∈ A, the mth component wm of the M -vector
w is wm = jm and the mth component of the vector a

(R)
n

is the symbol aRn,m in (3) while, for m /∈ A, wm = 0

and the components of a
(R)
n are irrelevant. Note that (10) is

only defined for n ∈ {0, 1, . . . , Nb + Ns − 1} but we can
straightforwardly extend it to any n provided that we assume
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Fig. 1. Structure for generating the term sR[i] in (6).

that a(R)
n ≡ b

(R)
n ≡ 0 when n /∈ {0, 1, . . . , Nb+Ns − 1}. We

can synthetically write the relation (8) as

d(R)
n =

Nb+Ns−1∑
n′=0

b
(R)
n′ × gn−n′ (11)

where the vector gn is defined so that its mth component gn,m
is

gn,m
�
= g((m+nM)Ts) m ∈ {0, 1, . . . ,M−1}.

(12)
Since the prototype filter g(t) can be nonnull only in the inter-
val [0,KT ), it follows that the vector gn can be nonnull only
for n ∈ {0, 1, . . . ,K − 1}, where K is the overlap parameter,
that is, the ratio between the length of the prototype filter g(t)
and the multicarrier symbol interval T . Consequently, (11) can
be rewritten as

d(R)
n = g0×b(R)

n +g1×b
(R)
n−1+. . .+gK−1×b

(R)
n−(K−1). (13)

A block diagram of the structure for the efficient generation
of the term sR[i] in (6) is reported in Fig. 1. Analogously, the
generation of the sequence s(I)[i] in (5) is equivalent to the
generation of the sequence of vectors d(I)

n defined as the output
of the PPN:

d(I)
n = g0×b(I)

n +g1×b
(I)
n−1+ . . .+gK−1×b

(I)
n−(K−1) (14)

with
b(I)
n

�
= IDFT[a(I)n ×w] (15)

where the mth component (m ∈ A) of the vector a
(I)
n is the

symbol aIn,m in (4).

III. THE EXACT CONJUGATE-SYMMETRY PROPERTY IN

OFDM

In OFDM systems the vector w in (15) has unit compo-
nents, the PPN and the offset of M/2 samples are not present,
i.e., the vector d(R)

n + jd
(I)
n is defined as IDFT[a

(R)
n + ja

(I)
n ]

and it is transmitted after cyclic-prefix extension. Therefore,
if a

(I)
n = 0, the vector d

(R)
n + jd

(I)
n = d

(R)
n possesses the

well-known CSP, as synthetically depicted in Fig. 2.
In the transmitted multicarrier symbol, the cyclic prefix is

followed by M samples that possess the CSP: if such M
samples are collected in the vector [u0 u1 uM/2 u2] (where the
length of both vectors u1 and u2 is M/2− 1), then u1 = u#

2

where u#
2 denotes the flipped and conjugate version of u2 (i.e.,

the mth entry of u1, denoted as u1,m, is equal to u∗
2,M/2−2−m

a#a c c∗b b#

� �
M
4 − 1

� �
M
4 − 1

� �
M
4 − 1

� �
M
4 − 1

× ×
� �

M

Fig. 2. Structure of the OFDM symbol for a
(I)
n = 0 [17] where a and b

denote the positions where the CSP holds with respect to the positions a#

and b#, respectively, c denotes a single position where the CSP holds with
respect to the position c∗ but it is not used, and, finally, × denotes positions
where no CSP holds.

for m = 0, 1, . . . ,M/2 − 2). In the signal received on a
flat channel in the absence of noise and frequency offset,
each cyclic prefix is followed by M samples that possess
the CSP: if such M samples are collected in the vector

[u0e
jφ u1e

jφ uM/2e
jφ u2e

jφ]
�
= [v0 v1 vM/2 v2] (where φ

denotes the phase offset), then v1e
−jφ = [v2e

−jφ]# = ejφv#
2

or equivalently
v1 = ej2φv#

2 . (16)

This relation defines the CSP that is exactly possessed by
the OFDM transmitted signal. Such a property can be utilized
for synchronization purposes in OFDM systems with real data
symbols as proposed in [17]: the end of the cyclic prefix and
the phase offset can be determined by scanning the received
signal and searching where such CSP is best approximated
according to a least-squares approach, that is,{

θ̂LS, φ̂LS
}
= argmin

θ,φ
‖v1(θ)− ej2φv#

2 (θ)‖2 (17)

where θ̂ denotes an estimate of the normalized delay θid =
τ/Ts assumed to be an integer and, moreover, the M vector
[v0(θ) v1(θ) vM/2(θ) v2(θ)] has been extracted at the candi-
date delay θTs. Note that the maximization procedure in (17)
provides a closed-form solution for the phase estimate φ̂LS

and, then, the ST estimation requires only a one-dimensional
search:

θ̂LS = argmax
θ

{
2|v1(θ) · v#

2 (θ)| − ‖v1(θ)‖2 − ‖v2(θ)‖2
}
.

(18)
A slightly different approach, which is aimed at simplifying

the threshold setting, is often suggested (see [18] and refer-
ences therein):

θ̂LS
�
= argmax

θ

2|v1(θ) · v#
2 (θ)|

‖v1(θ)‖2 + ‖v2(θ)‖2 . (19)

Note that, though not explicitly represented in the notation,
the statistics in (19) depends on the length of the interval
[v0 v1 vM/2 v2] from which the vectors v1 and v2 of length
M
2 − 1 are extracted. In the present section a length M is

considered while in the next sections a length M
2 is used.

IV. THE APPROXIMATE CONJUGATE-SYMMETRY

PROPERTY IN OFDM/OQAM

In OFDM/OQAM systems, as noted in section II, the mth
component of the vector w in (15) is not unit but it is equal
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Fig. 3. The structure of each of the Nb equal symbols in the considered
preamble for OFDM/OQAM systems when the multiplication by w is taken
into account (left cyclic shift). The definition of the introduced symbols is
explained in the caption of figure 2.

to jm = exp(j2π 1
4m), while the vectors a

(R)
n and a

(I)
n are

real-valued; consequently, from (10) and (15) it follows that
each vector b(R)

n and b
(I)
n possesses a particular structure that

derives from the cyclic shift of M/4 samples on the left. As
shown in Figure 3, this implies that, for each vector of length
M , two adjacent intervals of length M

2 can be singled out; in
both intervals, the classical CS property reported in Figure
2 holds. Therefore we can use the same test in (19) with
reference to intervals of length M

2 in order to estimate the
position of such intervals if we had to operate on sequence of
vectors {b(R)

n }. According to relations (2), (13), and (14), the
conjugate symmetry (that is exhibited by b

(R)
n ) is destroyed by

the fact that there is not any specific property capable to pass
such properties from b

(R)
n to the transmitted signal. However,

at the beginning of the burst transmission, some properties are
present that are independent of the transmitted symbols and
can be therefore exploited for blind synchronization. For sake
of clearness, we illustrate such properties with reference to the
prototype filter derived in [9] by using the frequency sampling
technique and in the case where the overlap parameter is K=4.
Let us first note that from (11)

d
(R)
0,s = g0,s × b

(R)
0,s

d
(R)
0,i = g0,i × b

(R)
0,i

d
(R)
1,s = g0,s × b

(R)
1,s + g1,s × b

(R)
0,s

d
(R)
1,i = g0,i × b

(R)
1,i + g1,i × b

(R)
0,i

d
(R)
2,s = g0,s × b

(R)
2,s + g1,s × b

(R)
1,s + g2,s × b

(R)
0,s

(20)

where we denote with d
(R)
k,s , gk,s, and b

(R)
k,s (for k = 0, 1, 2)

the vectors obtained from d
(R)
k , gk, and b

(R)
k , respectively,

by extracting the first M/2 components; moreover, we denote
with d

(R)
k,i , gk,i, and b

(R)
k,i the vectors obtained from d

(R)
k , gk,

and b
(R)
k , respectively, by extracting the last M/2 components.

Analogously, relation (20) can be re-written with reference
to the PPN in (14) by replacing the superscript R with I.
The impulse response of the considered prototype filter is
reported in Figure 4 where the intervals used to extract from
the prototype filter the vectors g0,s, g0,i, g1,s, g1,i, g2,s, and
g2,i, introduced in (20), are specified. Let us remind that
the vector b(R)

0 exhibits the properties described by Figure 3
and, therefore, the vector b(R)

0,i exhibits the classical property
described in Figure 2 over an interval of length M

2 . The
multiplication by g0,i in (20) implies that d

(R)
0,i does not

possess exactly the CS property. However, such a property is
approximately present since the entries of g0,i are all negative
real values. In fact, the original scalar product in (19) for two
equal vectors v1 and v#

2 resulting from the exact CS property
in b

(R)
0,i = [v0 v1 vM

4
v2]

|v1 · v#
2 | =

∣∣∣∣∣∣
M
4 −2∑
m=0

v1,mv2,M4 −2−m

∣∣∣∣∣∣ =
M
4 −2∑
m=0

|v1,m(θ)|2 (21)

(vi,m denotes the mth component of the vector vi for m ∈
{0, 1, . . . , M

4 − 2}) becomes, when referred to d
(R)
0,i = g0,i ×

b
(R)
0,i ,

∣∣∣∣∣∣
M
4 −2∑
m=0

[v1,m g0,i,m+1]
[
v2,M4 −2−mg0,i,M2 −1−m

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
M
4 −2∑
m=0

|v1,m|2 g0,i,m+1 g0,i,M2 −1−m

∣∣∣∣∣∣
(22)

where g0,i,m denotes the mth entry of g0,i for m ∈
{0, 1, 2, . . . , M

2 −1}. Since now g0,i,m+1 
= g0,i,M2 −1−m there
is not a conjugate symmetry but since g0,i,m+1 g0,i,M2 −1−m ≥
0, the sum in the right-hand side of (22) is still positive and
much larger than the value obtained for positions where such
an approximate property does not hold. This permits the use
of the test in (19) over intervals of length M

2 in order to
detect the positions where the CS property holds if we had to
operate over a sequence of vectors {d(R)

n }. Let us note that this
approximately holds also if the sign of g0,i,m+1g0,i,M2 −1−m

is not constant; in fact, if such a sign assumes the same
value for a large percentage of the M

4 − 1 values of the
sum in (22), then the term in the right-hand side of (22) is
much larger than that obtained for a generic position where
such an approximate property does not hold. Therefore, the
approximate CS property can be detected by the test in (19)
provided that a large percentage of terms in the sum in (22)
has the same sign. The delay of M/2 samples that the output
of the PPN in (14) exhibits with reference to the output of the
PPN in (13) implies that

d
(T)
0 = g0,s × b

(R)
0,s

d
(T)
1 = g0,i × b

(R)
0,i + g0,s × b

(I)
0,s

d
(T)
2 = g0,s × b

(R)
1,s + g1,s × b

(R)
0,s + g0,i × b

(I)
0,i

d
(T)
3 = g0,i × b

(R)
1,i + g1,i × b

(R)
0,i + g0,s × b

(I)
1,s

+ g1,s × b
(I)
0,s

d
(T)
4 = g0,s × b

(R)
2,s + g1,s × b

(R)
1,s + g2,s × b

(R)
0,s

+ g0,i × b
(I)
1,i + g1,i × b

(I)
0,i

(23)

where the vector d(T)
0 contains the first block of M/2 samples

of the transmitted signal while d
(T)
1 contains the second block

of M/2 samples of the same signal and so on. Let us take
into account that the choice of the prototype filter derived in
[9] implies ‖g0‖ � ‖g1‖; moreover, ‖g0,s‖ � ‖g0,i‖ and
‖g1,s‖ � ‖g1,i‖. Finally, ‖g2,s‖ 
 ‖g2,i‖ and ‖g2,s‖ =
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‖g1,i‖. Consequently, (23) can be approximated as

d
(T)
0 = g0,s × b

(R)
0,s

d
(T)
1 � g0,i × b

(R)
0,i

d
(T)
2 � g1,s × b

(R)
0,s

d
(T)
3 � g1,i × b

(R)
0,i

d
(T)
4 � g2,s × b

(R)
0,s + g1,i × b

(I)
0,i

(24)

The terms d
(T)
k for k ≥ 5 share the structure of d

(T)
4 since

for k ≥ 5 the two vectors with stronger entries are both
present. From the previous discussion, it follows that, for
k ∈ {0, 1, 2, 3}, d

(T)
k possesses an approximate conjugate

symmetry. With reference to the choice here considered, the
entries of the vector g0,s are very weak so that d(T)

0 is usually
buried in the noise but also the entries of d

(T)
1 and d

(T)
2 are

weak since the two leading vectors are g2,s and g1,i, which
include a large fraction of the prototype-filter energy. The
vector d

(T)
3 is the first vector which is contributed by one

of the two leading vectors so that d
(T)
3 is the first vector

whose power is not negligible at usual signal-to-noise ratios;
moreover, g1,i and g0,i possess a constant sign of the folded
vector while g1,s possesses a non-marginal percentage of
its M/4 entries of the folded vector with a different sign.
Therefore, we can deduce that the test for approximate CS
property achieves its maximum for d

(T)
3 while the values

relative to d
(T)
1 and d

(T)
2 are much smaller. Finally, note that

the vectors d
(T)
k for k ≥ 4 are contributed both by g2,s and

g1,i and, consequently, they do not exhibit significant values to
the test (19). In fact, by using the approximation (24) for d(T)

4

in the scalar product of the test (19), we do not obtain any
guarantee that the M/4 − 1 values summed up in the scalar
product maintain themselves coherent. Thus, when we look for
a position of conjugate symmetry in the received signal r(i)
(seen as a sequence of vectors d

(T)
n ) observed at the channel

output by using the test (19) over intervals of length M
2

Ψ(θ)
�
=

2

∣∣∣∣∣∣
M
4 −1∑
i=0

r(θ − i)r(θ + i)

∣∣∣∣∣∣
M
4 −1∑
i=0

|r(θ − i)|2 +
M
4 −1∑
i=0

|r(θ + i)|2
(25)

we obtain the argument of the top value (θ = θ1) of the
statistics Ψ(θ) in correspondence of the interval where the
vector d

(T)
3 is present. The beginning of such an interval is

shifted by 3M/2 samples at the right of the beginning of
the burst and θ1, which denotes the central value of such an
interval according to (25), is shifted of 7M/4 samples from
the first sample of the burst. Moreover, M samples on the left
of the top value, we find another maximum (θ = θ3) of the
statistics due to the properties of d(T)

1 and, in the middle point
between them, we find a second maximum (θ = θ2) due to
the properties of d(T)

2 .
Note that, though ‖g1,s‖ 
 ‖g0,i‖, the value of the

maximum in θ2 is only slightly larger than that in θ3 since
the signs of the components of g1,s, unlike those of g0,i, are
not constant. There is also a fourth maximum (θ = θ4) due
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Fig. 4. The prototype filter and the vectors g0,s, g0,i, g1,s, g1,i, g2,s, g2,i,
g3,s, and g3,i. The time axis refers to the choice M = 2048 but the same
partition holds also for other values of M .
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Fig. 5. A typical realization of the statistics Ψ(θ) in (25) in AWGN for
Eb/No = 20 dB and M = 1024. We denote with θ1, θ2 and θ3 the values
of θ corresponding to the three maxima of Ψ(θ). In the present example,
θ1 = 4828 while the burst begins at θ = 3036.

to the properties of d
(T)
0 , buried in noise at usual signal-to-

noise ratios. Therefore, the argument of the top value (θ = θ1)
of the statistic in (25) can be used for blindly estimating the
beginning of a burst of OFDM/OQAM symbols as θ1− 7M

4 . In
Fig. 5 we report a typical realization of the statistics in (25) in
AWGN for Eb/No = 20 dB and M = 1024. Although derived
for the sake of clearness with reference to the case K = 4,
often considered in OFDM/OQAM literature, the method can
be straightforwardly extended to other values of K .

Let us finally note that the statistics Ψ(θ) in (25) is
independent of the frequency offset ε; the derivation of the
method B in Section V implicitly sketches the prove of this
for the scalar product in the numerator of (25).

V. BLIND CFO ESTIMATION

In this section we introduce two different methods for blind
CFO estimation. The first method, dubbed method A, can be
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derived from the fact that from (24),

D
(T)
3

�
=

d
(T)
3

g1,i
� d

(T)
1

g0,i

�
= D

(T)
1 (26)

where the division between the two vectors is defined
component-wise. Consequently, in the presence of a normal-
ized frequency-offset ε and neglecting the presence of noise
and the effects of the channel, the entries of the vector
D

(T)
3 /D

(T)
1 are all equal to exp(j2π ε

MM) = exp(j2πε)

since d
(T)
1 is extracted M samples on the left of d

(T)
3 .

Therefore, we evaluate the angle φ̂A of the average of the
entries of D

(T)
3 /D

(T)
1 and, then, we estimate the unknown

CFO as φ̂A/(2π). In calculating the average, we do not use
the entries of D(T)

3 /D
(T)
1 with amplitude larger than 2 as they

are assumed to be outliers. Note that the extraction of the
vectors d

(T)
k requires a previous ST estimation and that the

errors in timing compensation worsen the performance of the
CFO estimator.

The method B uses the property that, under ideal condition,
the angles in the scalar products corresponding to the top value
(θ = θ1) of the statistics in (25) and the value in θ = θ2, which
is M/2 samples at its left, differ only due to the presence of the
CFO. More specifically, such a difference is equal to 2πε+π
and the condition is ideal since it neglects the mismatch in
the timing synchronization (obtained at the previous step), the
effects of the channel and the presence of noise. Under such
ideal conditions, the scalar product in (25) at θ = θ2 can be
written as follows:

v
(ε,g)
1 (θ2) · v(ε,g)#

2 (θ2) =

M
4 −2∑
m=0

v
(ε,g)
1,m (θ2)v

(ε,g)

2,M4 −2−m
(θ2)

(27)
with the mth component v(ε,g)l,m (θ2) of the vector v

(ε,g)
l (θ2)

(m ∈ {0, 1, . . . , M
4 − 2} and l ∈ {1, 2}) defined as{

v
(ε,g)
1,m (θ2)

�
= v1,m(θ2)g1,s,m+1 ej2π

ε
M m ejφ

v
(ε,g)
2,m (θ2)

�
= v2,m(θ2)g1,s,M4 +m+1 ej2π

ε
M m ej2π

ε
M

M
4 ejφ

(28)
for m ∈ {

0, 1, . . . , M
4 − 2

}
, where vl,m(θ2) is the mth

component of the vector vl(θ2) (m ∈ {0, 1, . . . , M
4 − 2}

and l ∈ {1, 2}), g1,s,m is the mth component of the vector
g1,s (for m ∈ {0, 1, . . . , M

2 − 1}) and φ is a constant phase
offset. The CS property implies that v1(θ2) = v#

2 (θ2) (i.e.,
v1,m(θ2) = v∗

2,M4 −2−m
(θ2) m ∈ {0, 1, . . . , M

4 − 2}) and,
consequently, (27) becomes

v
(ε,g)
1 (θ2) · v(ε,g)#

2 (θ2)=

M
4 −2∑
m=0

(
v1,m(θ2)g1,s,m+1e

j2π ε
M mejφ

)
×

(
v2,M4 −2−m(θ2)g1,s,M4 +(M

4 −2−m)+1e
j2π ε

M (M
4 −2−m)

× ej2π
ε
M

M
4 ejφ

)

=

M
4 −2∑
m=0

|v1,m(θ2)|2g1,s,m+1g1,s,M2 −m−1e
j2π ε

M
M
4 ej2π

ε
M (M

4 −2)ej2φ

= ej2φ ejπεe−j2π 2ε
M

M
4 −2∑
m=0

|v1,m(θ2)|2g1,s,m+1g1,s,M2 −m−1 (29)

Analogously, the scalar product in (25) at θ = θ1 can be
therefore written as follows:

v
(ε,g)
1 (θ1) · v(ε,g)#

2 (θ1) =

M
4 −2∑
m=0

v
(ε,g)
1,m (θ1)v

(ε,g)

2,M4 −2−m
(θ1)

(30)
with the mth component v(ε,g)l,m (θ1) of the vector v

(ε,g)
l (θ1)

(m ∈ {0, 1, . . . , M
4 − 2} and l ∈ {1, 2}) defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v
(ε,g)
1,m (θ1)

�
= v1,m(θ1) g1,i,m+1 ej2π

ε
M m ej2π

ε
M

M
2 ejφ

v
(ε,g)
2,m (θ1)

�
= v2,m(θ1) g1,i,M4 +m+1 ej2π

ε
M m ej2π

ε
M

M
4

× ej2π
ε
M

M
2 ejφ

(31)
for m ∈ {0, 1, . . . , M

4 − 2}, where vl,m(θ1) is the mth
component of the vector vl(θ1) (m ∈ {0, 1, . . . ,M/4 − 2}
and l ∈ {1, 2}) and g1,i,m is the mth component of the vector
g1,i (for m ∈ {0, 1, 2, . . . ,M/2−1}). The CS property implies
that v1(θ1) = v#

2 (θ1) (i.e., v1,m(θ1) = v∗
2,M4 −2−m

(θ1)

m ∈ {0, 1, . . . , M
4 − 1}) and, consequently, (30) becomes

v
(ε,g)
1 (θ1) · v(ε,g)#

2 (θ1) =

M
4 −2∑
m=0

(
v1,m(θ1)g1,i,m+1e

j2π ε
M m

× ej2π
ε
M

M
2 ejφ

)(
v2,M4 −2−m(θ1)g1,i,M4 +(M

4 −2−m)+1

× ej2π
ε
M (M

4 −2−m) ej2π
ε
M

M
4 ej2π

ε
M

M
2 ejφ

)

=

M
4 −2∑
m=0

|v1,m(θ1)|2g1,i,m+1g1,i,M2 −m−1 ej2π
ε
M (M

4 −2)

× ej2π
ε
M

M
4 ej2π

ε
M

M
2 2ej2φ = ej2πε ej2φ ejπεe−j2π 2ε

M

×
M
4 −2∑
m=0

|v1,m(θ1)|2g1,i,m+1g1,i,M2 −m−1. (32)

In order to evaluate the phase difference between the
quantities in (29) and (32), we have to note that (see also
Figure 4)

M
4 −2∑
m=0

g1,s,m+1g1,s,M2 −m−1 < 0 (33)

M
4 −2∑
m=0

g1,i,m+1g1,i,M2 −m−1 > 0 (34)

While (34) is obvious, (33) is verified with reference to the
considered prototype. The method is straightforwardly adapted
to a different prototype provided that the quantities in the left-
hand side of (34) and (33) are nonnull. The limited variations
with m of |v1,m(θ1)|2 and |v1,m(θ2)|2 imply that

∠
M
4 −2∑
m=0

|v1,m(θ2)|2g1,s,m+1g1,s,M2 −m−1 = π (35)

∠
M
4 −2∑
m=0

|v1,m(θ1)|2g1,i,m+1g1,i,M2 −m−1 = 0 (36)
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Fig. 6. Performance of the coarse estimator measured as rate for which
|Δθc| > M/8 where Δθc denotes the timing error of the coarse procedure.

From (29), (32), (35), and (36) it follows that

∠(v(ε,g)
1 (θ1) · v(ε,g)#

2 (θ1))− ∠(v(ε,g)
1 (θ2) · v(ε,g)#

2 (θ2))
= 2πε+ π

(37)
Finally, we introduce the method C that defines its output

as the average of the results obtained by the methods A and
B. For all three methods, to avoid ambiguities in the estimate,
the condition |ε| < 0.5 must be satisfied since they estimate
ε through the complex quantity exp(j2πε).

VI. NUMERICAL RESULTS

In this section the performance of the proposed blind
methods for ST and CFO estimation is assessed via computer
simulations. A number of 104 Monte Carlo trials has been
performed under the following conditions (unless otherwise
stated):

1) the considered OFDM/OQAM system has a bandwidth
B = 1/Ts = 11.2 MHz and M ∈ {4096, 2048, 1024}
subcarriers while the overlap parameter K is fixed at
K = 4;

2) all the transmitted symbols are the real and imaginary
part of 4-QAM symbols;

3) the considered multipath fading channel models are the
ITU Vehicular A and the ITU Vehicular B [19];

4) the channel is fixed in each run but it is independent
from one run to another;

5) the timing offset is uniformly distributed in
{3M, . . . , 4M − 1}, i.e., at least three symbol
intervals of pure noise are included at the beginning
of the transmitted signal; the overall length of the
observed interval is 10M samples;

6) the normalized frequency offset is uniformly distributed
in the range [−0.45, 0.45].

Since the use of test (25) is not associated with a marginal
computational complexity, we limited the use of the test to
an interval of length equal to M/4 samples centered on the
coarse estimate of the beginning of the burst. Such a coarse
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Fig. 7. RMSE of the proposed ST estimators over AWGN, ITU-A and ITU-B
channels for M = 4096.

estimate has been obtained by filtering the squared amplitude
|r(i)|2 of the received signal r(i) with a series of two causal
moving-average filters of M samples, which are simple to
implement:{

s(i) = s(i− 1) + |r(i)|2 − |r(i −M)|2
P (i) = P (i− 1) + s(i)− s(i −M)

(38)

where we have denoted with P (i) the final signal and initial-
ized with null values the recursions 2M samples before the
beginning of the considered interval {0, 1, . . . , 10M − 1}. Let
us denote with Pmax (Pmin) the maximum (minimum) value
of P (i) over the candidate interval of 10M samples. Then,
we search the time step Np such that

Np
�
= argmin

i

∣∣∣∣P (i)− Pmax + Pmin

2

∣∣∣∣ (39)

The coarsely estimated time-step where the burst begins is
given by Np− 11

4 M . In fact, according to the approximations
in (24), only during the transmission of d(T)

3 the power of the
transmitted signal is not negligible and is about the half of the
power transmitted by d

(T)
k for k ≥ 4. Therefore, the sequence

s(·) will start to significantly deviate from zero 3M/2 samples
after the beginning of the burst and will roughly saturate 3M
samples after the same beginning; consequently, the sequence
P (·) will start to significantly deviate from zero 3M/2 sam-
ples after the beginning of the burst and will roughly saturate
4M samples after the same beginning. Roughly assuming a
linear increase of the sequence P (·) in such an interval, we
obtain

P (io) � Pmax + Pmin

2
⇒ io �

3M
2 + 4M

2
=

11M

4
.

(40)
The interval of M/4 samples for searching the properties of
conjugate symmetry is then centered 7

4M samples (see Section
IV for the delay between θ1 and the beginning of the burst)
after the beginning of the burst and, therefore, at time-step
Np −M .
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Fig. 8. RMSE of the proposed ST estimators over AWGN, ITU-A and ITU-B
channels for M = 2048.
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Fig. 9. RMSE of the proposed ST estimators over AWGN, ITU-A and ITU-B
channels for M = 1024.

The noise effect on the statistics in (25) can have a signif-
icant impact since it may lead to single out a position that is
not correct. In such a case, there is not guarantee that the error
remains small because any time step of the observed interval
may be selected. In order to reduce the effects of such outliers
on the overall performance, we set a threshold Σ and we utilize
the algorithm for timing estimation only when the statistics in
(25) is larger than Σ; otherwise, we provide as output of the
overall timing estimator the coarse estimate obtained by using
(39).

Figure 6 shows the rate of wrong selection of the restricted
interval by means of the coarse procedure. We notice that
the coarse procedure is a valid method to restrict the search
interval for larger M ; however, it becomes poorer for smaller
M since the interval length M/4 becomes smaller while the
performance of the coarse procedure is practically independent
of M since it filters the instantaneous power of the received
signal. Note that no wrong selection has been observed on

AWGN channel for M = 2048 and M = 4096.
Figure 7 displays the root mean square error (RMSE) (nor-

malized to the number of subcarriers M ) of the proposed blind
ST estimator as a function of Eb/N0 both on AWGN channel
and on multipath channels ITU-A and ITU-B for M = 4096.
It is worthwhile to emphasize that in AWGN no errors were
observed in the performed 104 trials. For comparison purposes
it is also reported the performance achieved by the coarse
procedure (39) in order to appreciate the gain of the proposed
method. Figure 7 shows that the smaller value of the threshold
Σ = 0.1 provides improved performance over the choice
Σ = 0.2. For smaller values of Eb/N0, the choice of the
threshold Σ should be optimized empirically to the system
parameters: smaller values of the threshold often improve
performance but also increase the probability of outliers in
timing estimation. The proposed algorithm provides a strong
improvement over the coarse procedure in AWGN and ITU-
A channels and it allows one to achieve on ITU-B channel a
performance better than that assured by the coarse procedure
over AWGN channel.

Figures 8 and 9 report the same curves considered in Fig.
7 for values of M = 2048 and M = 1024, respectively. Note
that for smaller values of M the performance worsen: for
M = 2048 the performance of the proposed method on ITU-
B channel is equivalent to that of the coarse method on AWGN
channel while it becomes poorer for M = 1024. The figures
provide also a reasonable interval of values of the threshold Σ
that can be exploited by the estimator to achieve an acceptable
performance.

Figure 10 shows that in both multipath channels Eb/N0 �
12 dB (in AWGN channel Eb/N0 � 7 dB) is needed to
achieve an RMSE equal to 10%, which is determined in [20] as
a tolerable input RMSE for successful frequency-domain pilot-
based residual CFO compensation, while Eb/N0 � 18 dB is
needed to achieve (except for method B) on both multipath
channels an RMSE of 2%. Among the different methods here
proposed, we can notice that in multipath channels and for
Eb/N0 larger than 11 dB, method A is superior to method
B and they are practically equivalent otherwise; moreover,
only for Eb/N0 smaller than 14 dB, the additional complexity
needed for applying method C is justified by the performance
improvements. In AWGN channel, instead, method B is supe-
rior to method A for Eb/N0 smaller than 14 dB and they are
practically equivalent otherwise; consequently, the method C
provides the best performance. Figures 11 and 12 show similar
behaviors for different values of M with a slight increase of
all the values of Eb/N0 needed to obtain the properties just
recalled. These figures show that only a limited decrease of
the required value of the Eb/N0 needed to achieve a fixed
performance can be obtained by increasing the value of M .

VII. CONCLUSIONS

The problem of blind synchronization for OFDM/OQAM
systems has been considered. Specifically, a new method
for blind ST and CFO synchronization has been proposed
by exploiting the approximate CSP of the beginning of a
burst of OFDM/OQAM symbols due to the presence of the
time offset. The results of the performance analysis with
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Fig. 10. RMSE of the proposed CFO estimators over AWGN, ITU-A and
ITU-B channels for M = 4096.
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Fig. 11. RMSE of the proposed CFO estimators over AWGN, ITU-A and
ITU-B channels for M = 2048.

reference to the considered OFDM/OQAM system show that
the proposed blind ST and CFO estimators, complemented by
a simpler coarse ST estimator, achieve acceptable performance
for realistic values of Eb/N0.
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